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Abstract— The development of the Internet in recent years has made it possible and useful to access many different information systems 

anywhere in the world to obtain information. While there is much research on the integration of heterogeneous information systems, mos t 

commercial systems stop short of the actual integration of available data. Here the semi-structured data and their transformations to be 

verified and enhanced by using the fusion techniques. 
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1 INTRODUCTION                                                                     

Data fusion is the process of fusing multiple records 

representing the same real-world object into a single, consis-

tent, and clean representation 

 

Traditional database systems force all data to adhere to an ex-

plicitly specified, rigid schema. For many new database appli-

cations there can be two significant drawbacks to this ap-

proach. The data may be irregular and thus not conform to a 

rigid schema. In relational systems, null values typically are 

used when data is irregular, a well-known headache. While 

complex types and inheritance in object-oriented databases 

clearly enable more flexibility, it can still be difficult to design 

an appropriate object-oriented schema to accommodate irre-

gular data. 

 

It may be difficult to decide in advance on a single, correct 

schema. The structure of the data may evolve rapidly, data 

elements may change types, or data not conforming to the 

previous structure may be added. These characteristics result 

in frequent schema modifications, another well-known head-

ache in traditional database systems Because of these limita-

tions, many applications involving Semi structured data are 

forgoing the use of a database management system, despite 

the fact that many strengths of a DBMS (ad-hoc queries, effi-

cient access, concurrency control, crash recovery, security, etc.) 

would be very useful to those applications.                  .                      

 

As a popular first example, consider data stored on the World-

Wide Web. At a typical Web site, data is varied and irregular, 

and the overall structure of the site changes often. Today, very 

few Web sites store all of their available information in a data-

base system. It is clear, however, that Web users could take 

advantage of database support, e.g., by having the ability to 

pose queries involving data relationships (which usually are 

known by the site's creators but not made explicit). As a 

second example, consider information integrated from mul-

tiple, heterogeneous data sources. Considerable effort is typi-

cally spent to ensure that the integrated data is well-structured 

and conforms to a single, uniform schema. Additional effort is 

required if one or more of the information sources changes, or 

when new sources are added. Clearly, a database system that 

easily accommodates irregular data and changes in structure 

would greatly facilitate the rapid integration of heterogeneous 

databases. 
 

2   DATA FUSION TECHNIQUES 

With more and more information sources available via inex-

pensive network connections, either over the Internet or in 

company intranets, the desire to access all these sources 

through a consistent interface has been the driving force be-

hind much research in the field of information integration. 

During the last three decades many systems that try to accom-

plish this goal have been developed, with varying degrees of 

success. One of the advantages of information integration sys-

tems is that the user of such a system obtains a complete yet 

concise overview of all existing data without needing to access 

all data sources separately: complete because no object is for-

gotten in the result; concise because no object is represented 

twice and the data presented to the user is without contradic-

tion. The latter is difficult because information about entities is 

stored in more than one source. 

 

After major technical problems of connecting different data 

sources on different machines are solved, the biggest challenge 

remains: overcoming semantic heterogeneity that is, overcom-
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ing the effect of the same information being stored in different 

ways. The main problems are the detection of equivalent 

schema elements in different sources (schema matching) and 

the detection of equivalent object descriptions (duplicate de-

tection) in different sources to integrate data into one single 

and consistent representation. However, the problem of ac-

tually integrating or fusing, the data and coping with the exist-

ing data inconsistencies is often ignored. 

 

The problem of contradictory attribute values when integrat-

ing data from different sources is first mentioned by Dayal 

[1983]. Since then, the problem has often been ignored, yet a 

few approaches and techniques have emerged. Many of them 

try to avoid the data conflicts by resolving only the uncertain-

ty of missing values, but quite a few of them use different 

kinds of resolution techniques to resolve conflicts. 

 

With this survey we introduce the inclined reader to the 

process of data fusion in the wider context of information in-

tegration. This process is also referred to in the literature as 

data merging, data consolidation, entity resolution, or finding 

representations/survivors. We also present and compare exist-

ing approaches to implement such a data fusion step as part of 

an information integration process and enable users to choose 

the most suitable among them for the current integration task 

at hand. 

 

Data fusion techniques combine data from different sources 

together. The main objective of employing fusion is to produce 

a fused result that provides the most detailed and reliable in-

formation possible. Fusing multiple information sources to-

gether also produces a more efficient representation of the 

data. AUG1 Signals has been involved in research and devel-

opment in the area of data fusion for over a decade. The com-

pany has developed techniques in all three categories of data 

fusion 

 
 Pixel / Data level fusion 

 Feature level fusion 

 Decision level fusion 

 

Pixel level fusion is the combination of the raw data from mul-

tiple source images into a single image. Feature level fusion 
 

1 AUG Signals – Airbone Underwater Geophysical Signals 

requires the extraction of different features from the source 

data –before features are merged together. Decision level fu-

sion combines the results from multiple algorithms to yield a 

final fused decision. AUG Signals’ fusion algorithms have 

been applied to various types of data including: 

 

 Multi-sensor data 

 Multi-temporal data 

 Multi-resolution data 

 Multi-parameter data 

 

The two main application areas are Image Fusion and Algo-

rithm Fusion. Image Fusion techniques use different fusion 

techniques to combine multiple images into a single fused im-

age. Algorithm Fusion techniques fuse the decision results 

from multiple algorithms to yield a more accurate decision. 

 

2.1   ALGORITHM FUSION  

Algorithm fusion is an unique research area in which AUG 

Signals has been heavily involved. Algorithm fusion uses so-

phisticated rules to combine decisions from multiple algo-

rithms into a final decision, increasing the overall performance 

of the system. Two Algorithm Fusion techniques are discussed 

below, Multi-CFAR2 Detection and Decision Fusion of Sepa-

rate Data-mining Subsystems on Multiple Data Sources. 
 

2.1.1  MULTI-CFAR DETECTION  

Unlike single CFAR detectors, AUG Signals’ Multi-CFAR de-

tector uses several CFAR detectors, such as the Ordered Statis-

tics (OS) CFAR detector and the Cell Averaging (CA) CFAR 

detector, to perform detection on the same data. The detection 

decisions from each detector are fused using specific rules to 

obtain a final detection decision. The combination of CFAR 

detectors is able to provide complementary information and 

achieve higher detection performance than any single detector, 

while maintaining a constant false alarm rate. Please see AUG 

Signals’ Technical Brief on CFAR Detection for more details. 
 

2.1.2  DECISION FUSION OF SEPARATE DATA-MINING 

SUBSYSTEMS ON MULTIBLE DATA SOURCES 

The aim of fusing the decisions of separate data-mining sub-

systems operating on separate data sources is to increase the 

overall performance. Decision level fusion was chosen against 

data fusion and feature fusion in the three-level fusion hie-

rarchy, because of its feasibility, lower computational complex-

ity and robustness to the removal or addition of individual 

 

2 CFAR – Constant Fault Alarm Rate 
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data sources. Decision fusion is the major component in the 

multi-source data-mining system developed by AUG Signals 

for decision support and situation assessment. It is able to au-

tomatically generate a solution given a library of features, da-

ta-mining algorithms and fusion techniques that are compara-

ble to a tuned solution for the data set. The advantages of this 

system are its ability to incorporate: 

 

 Multiple-source (sensor) data 

 Multiple similar and dissimilar features 

 Multiple data-mining algorithms 

 Multiple fusion methodologies 

 

This produces a system that exploits the resources of truth 

data, feature extraction, data-mining and fusion, while mini-

mizing the level of expertise required for the end-user. The 

architecture for the system is shown below. 

 

 
 

 

2.2   DATA TRANSFORMATION 

Integrated information systems must usually deal with hete-

rogeneous schemata. In order to present to the user query re-

sults in a single unified schema, the schematic heterogeneities 

must be bridged. Data from the data sources must be trans-

formed to conform to the global schema of the integrated in-

formation system. Two approaches are common to bridge he-

terogeneity and thus specify data transformation: schema in-

tegration and schema mapping. The former approach is driven 

by the desire to integrate a known set of data sources. Schema 

integration regards the individual schemata and tries to gen-

erate a new schema that is complete and correct with respect 

to the source schemata, that is minimal, and that is unders-

tandable 

 

The latter approach, schema mapping, assumes a given target 

schema; that is, it is driven by the need to include a set of 

sources in a given integrated information system. A set of cor-

respondences between elements of a source schema and ele-

ments of the global schema are generated to specify how data 

is to be transformed A particularly interesting addition to 

schema mapping are schema matching3 techniques, which semi-

automatically find correspondences between two schemata. 

There is much ongoing research in both the areas of schema 

matching and schemas mapping comprehensive surveys are 

yet missing. 

 

The goal of both approaches, schema integration and schema 

mapping, is the same: transform data of the sources so that it 

conforms to a common global schema. Given a schema map-

ping, either to an integrated or to a new schema, finding such 

a complete and correct transformation is a considerable prob-

lem. The data transformation itself, once found, can be per-

formed offline, for instance, as an ETL process for data ware-

houses; or online, for instance, in virtually integrated fede-

rated databases. After this step in the data integration process 

all objects of a certain type are represented homogeneously. 
 

2.3   DUPLICATE DETECTION 

The next step of the data integration process is that of dupli-

cate detection (also known as record linkage, object identifica-

tion, reference reconciliation, and many others). The goal of 

this step is to identify multiple representations of the same 

real-world object: the basic input to data fusion. 

 

In principle, duplicate detection is simple: Compare each pair 

of objects using a similarity measure and apply a threshold. If 

a pair is more similar than the given threshold it is declared a 

duplicate. In reality there are two main difficulties to be 

solved: effectiveness and efficiency. 

 

Effectiveness is mostly affected by the quality of the similarity 

measure and the choice of a similarity threshold. A similarity 

measure is a function determining the similarity of two ob-

jects. Usually the similarity measure is domain-specific, for 

instance, designed to find duplicate customer entries. Domain-

independent similarity measures usually rely on string-

distance measures, such as the Levenshtein-distance [Levensh-

tein 1965]. The similarity threshold determines when two ob-

 

3 There are two other fields in computer science that also use the term 

(data) fusion. In information retrieval it means the combination of search 

results of different search engines into one single ranking, therefore it is 

also called rank merging. In networking it means the combination of data 

from a network of sensors to infer high-level knowledge, therefore also 

called sensor fusion. Beyond computer science, in market research, the term 

data fusion is used when referring to the process of combining two data-

sets on different, similar, but not identical objects that overlap in their 

descriptions. 
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jects are duplicates. A too-low threshold will produce a high 

recall (all duplicates are found) but a low precision (many 

non-duplicate pairs are declared duplicates). A too-high thre-

shold results in high precision, but low recall. Tuning the thre-

shold is difficult and very domain- and even dataset-specific. 

 

Efficiency is an issue because datasets are often very large, so 

even calculating and storing all pairs of objects can become an 

obstacle. Another obstacle of efficient duplicate detection is 

the complexity of the similarity measure itself, for instance, 

because the expensive Levenshtein-distance (or edit-distance) 

is part of the similarity function. The first obstacle is overcome 

by an intelligent partitioning of the objects and comparison of 

pairs of objects only within a partition. A prominent example 

of this technique is the sorted neighborhood method 

[Hern´andez and Stolfo 1998]. The second obstacle can be alle-

viated somewhat by efficiently computing upper bounds of 

the similarity and computing the actual distance only for pairs 

whose bounds are higher than the upper bound [Weis and 

Naumann 2004]. 

 

The result of the duplicate detection step is the assignment of 

an object-ID to each representation. Two representations with 

the same object-ID indicate duplicates. Note that more than 

two representations can share the same object-ID, thus form-

ing duplicate clusters. It is the goal of data fusion to fuse these 

multiple representations into a single one. 

2.4   COMPLETE AND CONCISE DATA INTEGRATION 

Data integration has two broad goals: increasing the com-

pleteness and increasing the conciseness of data that is availa-

ble to users and applications. An increase in completeness is 

achieved by adding more data sources (more objects, more 

attributes describing objects) to the system. An increase in 

conciseness is achieved by removing redundant data, by fus-

ing duplicate entries and merging common attributes into one. 

 

In analogy to the well-known precision/recall measure from 

information retrieval, we can similarly define a measure of 

conciseness/completeness when regarding unique and addi-

tional object representations in the considered universe and 

the concrete data set that is being measured (see Figure). 
 
 

 
 

Fig.Visualizing extensional and intensional completeness when integrating two data sources 

(source S and T with their respective schemas (A, B, ID) and (B, C, ID)) into one integrated result, 

using information from schema matching (common attributes, here identified by same name) and 

duplicate detection (common objects, here identified by same values in the ID column). 

Completeness. In analogy to recall, completeness of a dataset, 

such as a query result or a source table, measures the amount 

of data in that set, both in terms of the number of tuples (ex-

tensional, data level) and the number of attributes (intensional, 

schema level). 

 

Extensional completeness is the number of unique object re-

presentations in a dataset in relation to the overall number of 

unique objects in the real world, such as, in all the sources of 

an integrated system. It measures the percentage of real-world 

objects covered by that dataset. We assume we are able to 

identify same real-world objects, for example, by an identifier 

created during duplicate detection. 

 

                             =  

 

   =    

Intensional completeness is the number of unique attributes in 

a dataset in relation to the overall number of unique attributes 

available. An increase is achieved by integrating sources that 

supply additional attributes to the relation; that is, additional 

attributes that could not be included in one of the schema 

mappings between the sources considered so far. 
 

Conciseness. In analogy to precision, conciseness measures the 

uniqueness of object representations in a dataset. In the terms 

of the above Figure, extensional conciseness is the number of 

unique objects in a dataset in relation to the overall number of 

object representations in the dataset. 

 

                             =  

   

 

 =    

Similarly, intensional conciseness measures the number of 

unique attributes of a dataset in relation to the overall number 

of attributes. For these measures to be useful, the definition of 

objects in the universe and the considered dataset needs to be 

the same. Schema-altering operations, such as joins, may cause 

problems here. 

2.5   DATA FUSION ANSWERS 

The result of a query to an integrated information system is 

called an answer. Such an answer could be characterized, 

among others, as being one of the following. 

 Complete. A complete answer contains all the objects 

(extensionally complete) and also all attributes inten-

sionally complete) that have been present in the 

sources. A complete answer is not necessarily concise, 

Extensional     
completeness   

Extensional     
conciseness   
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as it may contain objects or attributes more than just 

once. 

 Concise. An answer is concise if all real-world objects 

(extensionally concise) and all semantically equiva-

lent attributes (intensionally concise) present are de-

scribed only once. 

 Consistent. A consistent answer contains all tuples 

from the sources that are consistent with respect to a 

specified set of integrity constraints (inclusion or 

functional dependencies) [Arenas et al. 1999; Fuxman 

et al. 2005a]. In this sense, such an answer is not nec-

essarily complete, as all inconsistent object represen-

tations are left out of the result. However, given that 

one of the integrity constraints is a key constraint on 

some real-world identifier, a consistent answer is ex-

tensionally concise for all included object representa-

tions. 

 Complete and Consistent. A complete and consistent 

answer combines the advantages of completeness and 

conciseness and consists of all real world object de-

scriptions from the sources, additionally fulfilling a 

key constraint on some real-world ID. Such a result 

contains all attributes from the sources and combines 

semantically equivalent ones into only one attribute. 

That way, intensional as well as extensional complete 

and conciseness is given. 

 

The data fusion step in data integration aims at producing a 

complete and consistent answer. 

3   RELATIONAL OPERATORS AND TECHNIQUES FOR 

DATA FUSION 

This section introduces standard and advanced relational op-

erators and examines their abilities in fusing data from differ-

ent data sources. As we specifically regard relational tech-

niques for the remainder of this section, data is integrated 

from source tables (possibly coming from different data 

sources) into one integrated table. We first consider standard 

operators, such as union and join. Join-based techniques gen-

erally combine tuples from several tables while evaluating 

some predicates on some of their columns. Union-based tech-

niques generally build a common schema first and then ap-

pend the different tuple sets from the source tables. We then 

regard more advanced relational techniques which combine 

standard operators, invent a new one, or use a different ap-

proach. The descriptions of operators and techniques assume 

binary operators, operating on two tables only. The extension 

to more than two tables is straightforward in all cases; howev-

er, associativity is not always given. 

 

 

Properties and Characteristics of Operators and Techniques 

 

We describe the following operators and techniques using one 

or more of the following characteristics. 

 

 
 

Value preservation. When combining tables in order to in-

crease extensional completeness, not necessarily all values 

from the sources are included in the result (e.g., a regular join 

that only contains tuples from one table, if it has a join partner 

in the other table). However, for an operator to be fully value 

preserving, exactly all values for all attributes of all described 

objects need to remain in the result. We denote an operator 

that does not lose any such value or creates or duplicates val-

ues value preserving. Please note that the sole existence of a 

value is not sufficient and that we allow duplicate values. 

Thus, bag union would be an example of a value preserving 

operator, set union and Cartesian product examples for non 

value-preserving operators. Value preservation becomes im-

portant when applying (duplicate-sensitive) functions after-

wards. 

 

Value preservation should not be mistaken with the property 

of restorability, meaning that we can invert the operation and 

infer the values in the sources from the result (e.g., not possi-

ble for union). A simpler case is object preservation: Actual 

values of attributes describing objects may get lost, but at least 

all objects that have been described in the sources are also in-

cluded in the result. Objects are thereby identified by a real-

world identifier. Please note that we do not consider informa-

tion preservation in terms of intensional completeness 

 

Uniqueness. An operator has the uniqueness preservation 

property if corresponding attributes (according to the schema 

mapping) that contain unique values in the sources also con-

tain unique values in the result. This is, for example, true for 

an equality join on these attributes, but not for a union. Uni-

queness-preserving operations are useful in scenarios where 

multiple representations of one real-world object only exist in 

different data sources (no intra source duplicates) and the 

unique attribute is a real world identifier. In contrast, an oper-

ator that creates a result that contains an attribute that is 

unique (regardless if there have been unique attributes in the 

sources) is said to have the uniqueness-enforcing property. In 
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order to produce a complete and concise answer, as is the goal 

in data fusion, an operator needs to be uniqueness enforcing 

in an attribute holding a real-world identifier. 

 

Join Approaches 

Join approaches in general increase intensional completeness, 

as attributes from different sources are seperately included in 

the result. However, this comes at the cost of not guaranteeing 

extensionally completeness, except for the case of a full outer 

join. Concerning extensional conciseness, join approaches per-

form very well, but only if we can rely on globally unique 

identifiers (e.g., created by duplicate detection), and no intra-

source duplicates are present. 

 

Standard Joins. An equi-join ( =) combines tuples from two 

relations if the join condition consists of equality conditions 

between columns and if it evaluates to true [Ullman et al. 

2001]. The result also includes all other attributes from the 

sources in the result. 

 

The Natural Join ( ) combines two tuples from two relations 

if all common attributes (same name) coincide in their 

attribute values [Ullman et al. 2001]. Attributes that are not 

present in all relations are not considered in joining the rela-

tions, but are included in the result. Natural joins are also uni-

queness preserving, but not necessarily value/object preserv-

ing. 

 

The Full outer Join (| | ) extends the result of a standard join 

operation by adding tuples that are only included in one of the 

two source relations. The missing attributes present in only 

one relation are padded by null values [Ullman et al. 2001]. 

 

Full Disjunction. As the outer join operator in general is not 

associative, combining more than two tables by an outer join 

may result in different result tables, depending on the order in 

which the tables are joined. The full disjunction operator is 

defined in Galindo-Legaria [1994] as the combination of two or 

more tables, where all matching tuples are combined into one 

single tuple. It could therefore be seen as a generalization of a 

full outer join to more than two relations. Full disjunction can 

generally not be computed by a combination of outer joins 

alone [Galindo-Legaria 1994]. Rajaraman and Ullman [1996] 

cover full disjunctions in more detail and recent work on the 

topic provides a fast implementation [Cohen and Sagiv 2005]. 

Full disjunctions are uniqueness preserving and value/object 

preserving, like full outer joins.  

 

Union Approaches 

Union approaches are the natural way of accomplishing ex-

tensional completeness, as the result naturally includes all 

tuples from both relations. In contrast to join approaches, un-

ion approaches do not perform as well concerning concise-

ness. 

 

Union, Outer Union, and Minimum Union. The union (∪) 

operator (with set semantics) combines the tuples of two un-

ion-compatible relations and removes exact duplicates, that is, 

tuples that coincide in all attribute values [Ullman et al. 2001]. 

Two relations are union compatible if they are defined on the 

same number of attributes and if the data types of the 

attributes match. Union is not defined on nonunion-

compatible relations. As the two example data sources are not 

unioncompatible (nonmatching data types), they cannot be 

integrated using union. Union is not uniqueness preserving as 

only exact duplicates are removed, resulting in contradicting 

tuples, with the same key value in the source relations appear-

ing multiple times in the result. Uncertainties and contradic-

tions are ignored; the operator is not value- but object preserv-

ing. 

 

Outer union ( ) overcomes one restriction of union and com-

bines two nonunion compatible relations by first padding 

attributes that are not in common with null values and then 

performing a regular union [Galindo-Legaria 1994]. Like un-

ion, outer union is not value- but object preserving. It is not 

uniqueness preserving, and conflicts are ignored. Outer union 

is not a standard operator but can be rewritten in SQL. 

 

The minimum union operator (⊕) is defined by Galindo-

Legaria [1994] as the result of an outer union from which sub-

sumed tuples have been removed. 

3.1   OTHER TECHNIQUES 

The following techniques are neither join, nor union-based, 

many incorporating additional information, extending the 

relational model or existing relational operators, or combining 

operators in order to fuse data. 

 

Considering All Possibilities. Another possible way of dealing 

with uncertain data is to explicitly represent uncertainty in 

relations and use it to answer queries. The approaches de-

scribed in Lim et al. [1994] and DeMichiel [1989] add an addi-

tional column to each table, its value helping to decide wheth-

er a tuple should be included in the query answer. All these 

approaches implement the Consider All Possibilities strategy, 

using the additional information to allow the user to choose 

consciously among all possibilities or presenting the most 

probable value. 
 

Considering Only Consistent Possibilities. A new line of re-

search was initiated by work started in Arenas et al. [1999], 

which introduced the idea of returning only consistent infor-

mation (not containing conflicts, given some constraints) from 

a database to a user when issuing a query. 
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Among the relational techniques, union approaches are in 

principle well suited for data fusion, as all information from 

the source tables are retained and extensional as well as inten-

sional completeness are easily reached. Only unnecessary in-

formation (i.e., duplicate tuples or subsumed tuples) is de-

leted, increasing conciseness. As attributes describing the same 

semantic concept can be mapped, intensional conciseness is 

also reached in an intuitive manner. However, in most cases, 

too many tuples and therefore too much information is kept, 

requiring an additional step towards a more satisfying level of 

conciseness. This finally results in one single tuple per real-

world object. The intuitive way of increasing conciseness to-

gether with the union approach is to apply grouping and ag-

gregation. 

 

On the other hand, join approaches generally retain informa-

tion on same real-world objects in different columns (not in 

different rows). Columns with equal semantic attributes do 

not automatically coincide as in the union approaches. They 

need to be combined explicitly. Moreover, completeness comes 

more or less without cost, but conciseness needs to be 

achieved by an additional processing of the join result. If there 

are no intrasource duplicates in the tables, a simple combina-

tion of two rows using a user-defined function is sufficient. 

However, if there are intrasource duplicates, again, grouping 

and aggregation or some advanced join operator is needed. 
 

4   DATA TRANSFORMATION 

Information from theWeb has already become of major impor-

tance in helping individuals and companies to follow the cur-

rent development inmany areas, analyzing market develop-

ments and making business decisions. In an online bookshop, 

a data warehouse, for example, can be used to manage busi-

ness transaction data, such as customer orders and promo-

tions. 

 

The implementation of OLAP on the data warehouse will help 

to gain an insight into customer behavior, perform buy and 

replenish analysis, and design focused promotions. 

 

However, in order to analyze market trends and make new 

business plans, a company’s own data is not sufficient, the 

bookshop manager also needs information from his suppliers, 

partners, and about his competitors. For example, discount 

book information or information about new publications from 

his competitors is important to help him 

4.1   TRANSFORMATION ALGORITHM 

After mapping rules are specified, a parser will parse the 

mapping rules and produce the traversing route list and a list 

of subtrees needed in constructing the tree representing the 

relational table. This data provides the input parameters of the 

mapping algorithm. The input tree in the algorithm can be any 

MIX object tree of the corresponding concepts. The output 

trees will be warehouse tables. The key part of the transforma-

tion algorithm is a procedure for recursively traversing an ob-

ject tree from the root to the leaves until needed subtrees are 

reached. 

 

At first, the transformation processor does a breadth-first tra-

verse on a MIX object tree. If a node label matches the route 

information from the mapping rules, the search will be ap-

plied on its subtrees (sub objects). If two or more node labels 

match with the same route node label, the sub objects of that 

first MIX object matched will be searched first. 

 

This procedure works recursively until all needed subtrees 

(MIX sub objects) are found. Once a needed sub tree is found 

it will be extracted, transformed and merged into the corres-

ponding output tree. The transformation algorithm is outlined 

below: 

 

Algorithm: 

 

 Given a MIX object which can be illustrated as a tree 

T, t: the root node of tree T; 

 P: a list of MIX objects, their ontology concepts as node labels 

indicate routes from the root node to the needed subtrees; 

 C: a list of column names of a warehouse table; 

Output: a relational table which can be represented as a fixed-

depth tree RT. 

 

Procedure transform ( t, P, C ) 

 

Var Mark : sign of visited 

m, n : nodes 

p : an ontology concept in P 

c : a column name in C 

 

Begin 

if t is not visited then Mark[t] : = visited; 

for each m adjacent to t do 

 

Begin 

Mark[m] : = visited; 

if m matches one p in P then 

 

Begin 

if p does not match any c in C then 

transform (m, P, C); 

else // p matches c 

 

Begin 
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for each n adjacent to m do 

 

Begin 

if n is not visited then 

 

Begin 

Mark[n] : = visited; 

do whatever processing is necessary on n; 

merge (n, RT); 

 

End 

 

End 

 

End 

 

End 

 

End 

 

End 

5 REPRESENTING AND QUERYING SEMI-STRUCTURED 

DATA 

 
OEM Database 

 

The Object Exchange Model (OEM) [PGMW95] is designed 

for semi structured data. Data in this model can be thought of 

as a labeled directed graph. For example, the very small OEM 

database shown in Figure contains (fictitious) information 

about the Stanford Database Group. The vertices in the graph 

are objects; each object has a unique object identifier (oid), 

such as &5. Atomic objects have no outgoing edges and con-

tain a value from one of the basic atomic types such as integer, 

real, string, gif, java, audio, etc. 

 

All other objects may have outgoing edges and are called 

complex objects. Object &3 is Complex and its sub objects are 

&8, &9, &10, and &11. Object &7 is atomic and has value 

“Clark". Names are special labels that serve as aliases for ob-

jects and as entry points into the database. In OEM Database 

Figure, DB Group is a name that denotes object &1. Any object 

that cannot be accessed by a path from some name is consi-

dered to be deleted. 

 

In an OEM database, there is no notion of fixed schema. All 

the schematic information is included in the labels, which may 

change dynamically. Thus, an OEM database is self-describing, 

and there is no regularity imposed on the data. The model is 

designed to handle incompleteness of data, as well as struc-

ture and type heterogeneity as exhibited in the example data-

base. Observe in Figure OEM Database that, for example: 

 

(i) members have zero, one, or more offices;  

(ii) an office is sometimes a string and sometimes a com-

plex object;  

(iii) a room may be a string or an integer. 

 

For an OEM object X and a label l, the expression X:l denotes 

the set of all l-labeled sub objects of X. If X is an atomic object, 

or if l is not an outgoing label from X, then X:l is the empty set. 

Such “dot expressions" are used in the query language. 

5.1 THE LOREL QUERY LANGUAGE 

 

In this subsection we introduce the Lorel query language, 

primarily through examples. Lorel is an extension of OQL and 

a full specification can be found in [AQM+96]. Here we high-

light those features of the language that have an impact on the 

novel aspects of the system features designed specifically for 

handling semi structured data. Many other useful features of 

Lorel (some inherited from OQL and others not) that are more 

standard will not be covered. 

5.2  QUERY AND UPDATE PROCESSING IN LORE 

 

As depicted in the above Figure, the basic steps that Lore fol-

lows when answering a query are:  

 

 the query is parsed;  

 the parse tree is preprocessed and translated into an 

OQL-like query;  

 a query plan is constructed;  

 query optimization occurs; and 

 the optimized query plan is executed. 

 

Query processing in Lorel is fairly conventional, with some 

notable exceptions: Because of the flexibility of Lorel, the pre-

processing of the parse tree to produce the OQL-like query is 

complex. 

 

Although the Lore engine is built around standard operators 

(such as Scan and Join), some take an original favor. For ex-

ample, Scan may take as argument a general path expression, 

and therefore may entail complex searches in the database 

graph. 
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A unique feature of Lore is its automatic coercion of atomic 

values. Coercion has an impact on the implementation of 

comparators (e.g., = or <), but more importantly we shall see 

that it has important effects on indexing. 

 

The result of a Lorel query is always a set of OEM objects, 

which become sub objects of a newly created Result object. 

The Result object is returned through the API. The application 

may then use routines provided by the API to traverse the re-

sult sub objects and display them in a suitable fashion to the 

user. 

 

Because of the exibility of Lorel, the preprocessing of the parse 

tree to produce the OQL-like query is complex. We have im-

plemented the specification described in [AQM+96] and we 

will not discuss the issue further here. 

 

Although the Lore engine is built around standard operators 

(such as Scan and Join), some take an original flavor. For ex-

ample, Scan may take as argument a general path expression, 

and therefore may entail complex searches in the database 

graph. 

 

A unique feature of Lore is its automatic coercion of atomic 

values. Coercion has an impact on the implementation of 

comparators (e.g., = or <), but more importantly we shall see 

that it has important effects on indexing.  

The result of a Lorel query is always a set of OEM objects, 

which become sub objects of a newly created Result object. 

The Result object is returned through the API. The application 

may then use routines provided by the API to traverse the re-

sult sub objects and display them in a suitable fashion to the 

user. 

5.3  QUERY OPERATORS & PLAN 

 

Because of the exibility of Lorel, the preprocessing of the parse 

tree to produce the OQL-like query is complex. We have im-

plemented the specification described in [AQM+96] and we 

will not discuss the issue further here. 

 

Although the Lore engine is built around standard operators 

(such as Scan and Join), some take an original flavor. For ex-

ample, Scan may take as argument a general path expression, 

and therefore may entail complex searches in the database 

graph. 

 

A unique feature of Lore is its automatic coercion of atomic 

values. Coercion has an impact on the implementation of 

comparators (e.g., = or <), but more importantly we shall see 

that it has important effects on indexing.  

 

The result of a Lorel query is always a set of OEM objects, 

which become sub objects of a newly created Result object. 

The Result object is returned through the API. The application 

may then use routines provided by the API to traverse the re-

sult sub objects and display them in a suitable fashion to the 

user. 

 

 
Steps of Constructing a Query Plan 

 

To see the construction of the query plan, refer to the above 

Figure the sub tree for the from clause is constructed first. 

Each simple path expression (or range variable) appearing 

within the from becomes a Scan node. If several of these exist, 

then a left-deep tree of Scan nodes with Join nodes connecting 

them is constructed. At the top of the sub tree a Join node con-

nects the from clause with the sub tree for the where clause. For 

where, each exists becomes a Select, Aggr, and Scan node, and 

each predicate becomes a Select node. Finally, for the select 

clause, another Join node is added to the top of the tree, and the 

query plan sub tree for the select clause becomes the right 

child. Let us further consider the sub tree for the select clause. 

The plans for the two expressions constituting the select clause 

are combined via union (using the SetOp operator). 

 

Thus, each (complex) object in the result contains the set of all 

Name sub objects of a Member (the left sub tree of the Union), 

together with the count of all publications for that member. (In 

Lorel, a select list indicates union, while ordered pairs would 

be achieved using a tuple constructor operator.) The CreateSet 

operator, described earlier, is needed to obtain all Name child-
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ren of a given member before returning its object assignment 

up the query tree. A CreateSet operator is not used in the right 

sub tree, however, since the Aggregation operator by defini-

tion already calls its subquery to exhaustion (and then applies 

the aggregation operator, in this case count) before continuing. 

5.4  QUERY OPTIMIZATION AND INDEXING 

 

The Lore query processor currently implements only a few 

simple heuristic query optimization techniques. For example, 

we do push selection operators down the query tree, and in 

some cases we eliminate or combine redundant operators. In 

the future, we plan to consider additional heuristic optimiza-

tions, as well as the possibility of truly exploring the search 

space of feasible plans. 

 

Despite the lack of sophisticated query optimization, Lore 

does explore query plans that use indexes when feasible. In a 

traditional relational DBMS, an index is created on an attribute 

in order to locate tuples with particular attribute values quick-

ly. In Lore, such a value index alone is not sufficient, since the 

path to an object is as important as the value of the object. 

Thus, we have two kinds of indexes in Lore: a link (edge) in-

dex, or Lindex, and a value index, or Vindex. A Lindex takes an 

oid and a label, and returns the oids of all parents via the spe-

cified label. (If the label is omitted all parents are returned.) 

The Lindex essentially provides “parent pointers”, since they 

are not supported by Lore's object manager. A Vindex takes a 

label, operator, and value. It returns all atomic objects having 

an incoming edge with the specified label and a value satisfy-

ing the specified operator and value (e.g., < 5). Because Vin-

dexes are useful for range (inequality) as well as point 

(equality) queries, they are implemented as B+-trees. Lindexes, 

on the other hand, are used for single object lookups and thus 

are implemented using linear hashing. 

5.5  VALUE INDEXES 

 

In order to use Vindexes for comparisons, Lore must maintain 

three different kinds of Vindexes: 

(i) A String Vindex, which contains index entries for all 

string-based atomic values (string, HTML, URL, etc.). 

(ii) A Real Vindex, which contains index entries for all nu-

meric-based atomic values (integer and real). 

(iii) A String-coerced-to-real Vindex, which contains all string 

values that can be coerced into an integer or real (stored as 

reals in the index). 

5.6  INDEX QUERY PLANS 

 
If the user's query contains a comparison between a path ex-

pression and an integer, real, or string (e.g., \DBGroup. Mem-

ber.Age > 30"), and the appropriate Vindexes and Lindexes exist, 

then a query plan that uses indexes will be generated. For 

simplicity, let us consider only queries in which the where 

clause consists of one such comparison. Query plans using 

indexes are different in shape from those based on Scan opera-

tors. Intuitively, index plans traverse the database bottom-up, 

while scan-based plans perform a top-down traversal. An in-

dex query plan first locates all objects with desired values and 

appropriately labeled incoming edges via the Vindex. A se-

quence of Lindex operations then traverses up from these ob-

jects attempting to match the full path expression in the com-

parison.4 Note that once we have an OA that satisfies the 

where clause, it may be necessary to use one or more Scan 

operations to find those components of the select expression 

that do not appear in the where clause. 

 

A query plan using indexes is shown in Figure. This plan in-

troduces four new query operators: Vindex, Lindex, Once, and 

Named Obj. The Vindex operator, which appears as the left 

child of the second Join operator, iteratively finds all atomic 

objects with value less than 30 and an incoming edge labeled 

Age, placing their oids in slot  OA2.  The  Lindex  operator 

that appears below the Once operator iteratively places into 

OA1 all parents of the object in OA2 via an 

 

 

 
               Fig. Index Query Plan 

 

Age edge. (Since OEM data may have arbitrary graph struc-

ture, the object could potentially have several parents via Age, 

as well as parents via other labels.) Since Age is existentially 

quantified in the query, we only want to consider each parent 

once, even if it has several Age sub objects; this is the purpose 

of the Once query operator. The second Lindex operator finds 

all parents of the OA1 object via a Member edge, placing them 

in OA0. Since we want the object in OA0 to be the named ob-

ject DBGroup, the Named Obj operator checks whether this is 

so. Once we have traversed up the database using index calls 

and constructed a valid OA, we finally use a Scan operator to 

find all Office sub objects, which are returned as the result via 

the topmost Project operator. 

Currently, for processing where clauses, Lore only considers 

subplans that are completely index-based (i.e., bottom-up), 

such as the one discussed here, or subplans that are complete-
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ly Scan-based (i.e., top-down), such as the one in the previous 

Figure. An interesting research topic that we have just begun 

to address is how to combine both bottom-up (index) and top-

down (Scan) traversals. When the two traversals reach a pre-

defined “meeting point”, the intersection of the objects discov-

ered by the index calls and the Scan operators identify paths 

that satisfy the where clause. The appropriate meeting point 

depends on the “fan-in” and “fan-out” of the vertices and la-

bels in the database, and requires the use of statistical informa-

tion. 

5.7 UPDATE QUERY PLANS 

 

Thanks to query plan modularity, we were able to handle arbi-

trary Lorel update statements by adding a single operator,  

 

 
Fig. Update Query Plan 

 

Update, to the query execution engine. The query plan is out-

lined in the following Figure. The left sub tree of the Update 

node computes the from and where clauses of the update. In 

our example, the left sub tree  Finds those projects with title 

“Lore” or “Tsimmis”. For each OA returned, the right sub tree 

is called to evaluate the query plan for the sub- query to the 

right of +=. (Other valid update assignment operators are := 

and = [AQM+96]). In our example, the right sub tree finds 

those members whose name is “Clark”. Once the right sub tree 

completes the OA, the Update node performs the actual up-

date operation; valid operations are Create Edge, Destroy 

Edge, and Modify Atomic. In our example, the Update node 

creates an edge labeled Member between each pair of objects 

identified by its subtrees. Clearly a number of optimizations 

are possible in update processing. For instance, in our example 

the right sub tree of the Update node is uncorrelated with the 

left sub tree and thus needs to be executed only once. We cur-

rently perform this optimization, and we are investigating 

others. 

6.  CONCLUSION 

 
In this paper we introduced the problem of data fusion in the 

larger context of data integration, where data fusion is the last 

step in a data integration process, schemata have been 

matched, and duplicate records have been identified. Merging 

these duplicate records into a single representation and at the 

same time resolving existing data conflicts is still out of the 

focus of mainstream research in the field of information inte-

gration systems. However, the problem has been addressed by 

several researchers in the past decades. 

 

In the second part of this paper, we gave an overview and 

compared common relational techniques for data fusion. We 

showed how they cope with data conflicts and mention the 

characteristics of the results that they produce. In the third 

part, we presented and commented on a list of information 

integration systems that are capable of fusing data in various 

ways. We classified the systems according to their abilities of 

handling conflicts. 

 

We have introduced a data-driven framework for the automat-

ic discovery of query transformation rules in semantic query 

optimization. Based on this framework, we have introduced a 

grid representation as the data distribution in the space of a 

set of finite attributes. We have provided an algorithm for ex-

tracting a set of query transformation rules. We have shown 

the correctness of our algorithm and the rules derived from it. 

We also proved the completeness of our algorithm in a limited 

sense. Finally, an extended example of a semantic query opti-

mization session was provided to demonstrate our discovery 

framework. 

 

As part of our future research, we would like to extend our 

framework to the discovery of statistical rules for processing 

statistical queries. Lastly, we would like to investigate the ben-

efits of data fusion and its usages in semi structured data 

transformations 
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