
International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012 1

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Querying Semi-Structured Data Transformations
Using Data Fusion Techniques

V. David Martin, D. Shanmugasundaram

Abstract— The development of the Internet in recent years has made it possible and useful to access many different information systems

anywhere in the world to obtain information. While there is much research on the integration of heterogeneous information systems, mos t

commercial systems stop short of the actual integration of available data. Here the semi-structured data and their transformations to be

verified and enhanced by using the fusion techniques.

Index Terms— AUG Signals, CFAR, Lindexes, OQL, Transformation Algorithm, , Vindexes

—————————— ——————————

1 INTRODUCTION

Data fusion is the process of fusing multiple records

representing the same real-world object into a single, consis-

tent, and clean representation

Traditional database systems force all data to adhere to an ex-

plicitly specified, rigid schema. For many new database appli-

cations there can be two significant drawbacks to this ap-

proach. The data may be irregular and thus not conform to a

rigid schema. In relational systems, null values typically are

used when data is irregular, a well-known headache. While

complex types and inheritance in object-oriented databases

clearly enable more flexibility, it can still be difficult to design

an appropriate object-oriented schema to accommodate irre-

gular data.

It may be difficult to decide in advance on a single, correct

schema. The structure of the data may evolve rapidly, data

elements may change types, or data not conforming to the

previous structure may be added. These characteristics result

in frequent schema modifications, another well-known head-

ache in traditional database systems Because of these limita-

tions, many applications involving Semi structured data are

forgoing the use of a database management system, despite

the fact that many strengths of a DBMS (ad-hoc queries, effi-

cient access, concurrency control, crash recovery, security, etc.)

would be very useful to those applications. .

As a popular first example, consider data stored on the World-

Wide Web. At a typical Web site, data is varied and irregular,

and the overall structure of the site changes often. Today, very

few Web sites store all of their available information in a data-

base system. It is clear, however, that Web users could take

advantage of database support, e.g., by having the ability to

pose queries involving data relationships (which usually are

known by the site's creators but not made explicit). As a

second example, consider information integrated from mul-

tiple, heterogeneous data sources. Considerable effort is typi-

cally spent to ensure that the integrated data is well-structured

and conforms to a single, uniform schema. Additional effort is

required if one or more of the information sources changes, or

when new sources are added. Clearly, a database system that

easily accommodates irregular data and changes in structure

would greatly facilitate the rapid integration of heterogeneous

databases.

2 DATA FUSION TECHNIQUES

With more and more information sources available via inex-

pensive network connections, either over the Internet or in

company intranets, the desire to access all these sources

through a consistent interface has been the driving force be-

hind much research in the field of information integration.

During the last three decades many systems that try to accom-

plish this goal have been developed, with varying degrees of

success. One of the advantages of information integration sys-

tems is that the user of such a system obtains a complete yet

concise overview of all existing data without needing to access

all data sources separately: complete because no object is for-

gotten in the result; concise because no object is represented

twice and the data presented to the user is without contradic-

tion. The latter is difficult because information about entities is

stored in more than one source.

After major technical problems of connecting different data

sources on different machines are solved, the biggest challenge

remains: overcoming semantic heterogeneity that is, overcom-

————————————————

 V. David Martin, M.Sc., M.Phil., C.S.T.P., Lecturer in Computer

Science, H.H. The Rajah’s College(Auto.), Pudukkottai, Tamilnadu,

India- 622001, PH-9842098741. E-mail: haidavein@gmail.com

 D. Shanmugasundaram, M.Sc., M.Phil., Asst. Prof. of Computer

Science, H.H. The Rajah’s College(Auto.), Pudukkottai, Tamilnadu,

India- 622001, PH-9865467456. E-mail: dshhrc@gmail.com

International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012 2

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

ing the effect of the same information being stored in different

ways. The main problems are the detection of equivalent

schema elements in different sources (schema matching) and

the detection of equivalent object descriptions (duplicate de-

tection) in different sources to integrate data into one single

and consistent representation. However, the problem of ac-

tually integrating or fusing, the data and coping with the exist-

ing data inconsistencies is often ignored.

The problem of contradictory attribute values when integrat-

ing data from different sources is first mentioned by Dayal

[1983]. Since then, the problem has often been ignored, yet a

few approaches and techniques have emerged. Many of them

try to avoid the data conflicts by resolving only the uncertain-

ty of missing values, but quite a few of them use different

kinds of resolution techniques to resolve conflicts.

With this survey we introduce the inclined reader to the

process of data fusion in the wider context of information in-

tegration. This process is also referred to in the literature as

data merging, data consolidation, entity resolution, or finding

representations/survivors. We also present and compare exist-

ing approaches to implement such a data fusion step as part of

an information integration process and enable users to choose

the most suitable among them for the current integration task

at hand.

Data fusion techniques combine data from different sources

together. The main objective of employing fusion is to produce

a fused result that provides the most detailed and reliable in-

formation possible. Fusing multiple information sources to-

gether also produces a more efficient representation of the

data. AUG1 Signals has been involved in research and devel-

opment in the area of data fusion for over a decade. The com-

pany has developed techniques in all three categories of data

fusion

 Pixel / Data level fusion

 Feature level fusion

 Decision level fusion

Pixel level fusion is the combination of the raw data from mul-

tiple source images into a single image. Feature level fusion

1 AUG Signals – Airbone Underwater Geophysical Signals

requires the extraction of different features from the source

data –before features are merged together. Decision level fu-

sion combines the results from multiple algorithms to yield a

final fused decision. AUG Signals’ fusion algorithms have

been applied to various types of data including:

 Multi-sensor data

 Multi-temporal data

 Multi-resolution data

 Multi-parameter data

The two main application areas are Image Fusion and Algo-

rithm Fusion. Image Fusion techniques use different fusion

techniques to combine multiple images into a single fused im-

age. Algorithm Fusion techniques fuse the decision results

from multiple algorithms to yield a more accurate decision.

2.1 ALGORITHM FUSION

Algorithm fusion is an unique research area in which AUG

Signals has been heavily involved. Algorithm fusion uses so-

phisticated rules to combine decisions from multiple algo-

rithms into a final decision, increasing the overall performance

of the system. Two Algorithm Fusion techniques are discussed

below, Multi-CFAR2 Detection and Decision Fusion of Sepa-

rate Data-mining Subsystems on Multiple Data Sources.

2.1.1 MULTI-CFAR DETECTION

Unlike single CFAR detectors, AUG Signals’ Multi-CFAR de-

tector uses several CFAR detectors, such as the Ordered Statis-

tics (OS) CFAR detector and the Cell Averaging (CA) CFAR

detector, to perform detection on the same data. The detection

decisions from each detector are fused using specific rules to

obtain a final detection decision. The combination of CFAR

detectors is able to provide complementary information and

achieve higher detection performance than any single detector,

while maintaining a constant false alarm rate. Please see AUG

Signals’ Technical Brief on CFAR Detection for more details.

2.1.2 DECISION FUSION OF SEPARATE DATA-MINING

SUBSYSTEMS ON MULTIBLE DATA SOURCES

The aim of fusing the decisions of separate data-mining sub-

systems operating on separate data sources is to increase the

overall performance. Decision level fusion was chosen against

data fusion and feature fusion in the three-level fusion hie-

rarchy, because of its feasibility, lower computational complex-

ity and robustness to the removal or addition of individual

2 CFAR – Constant Fault Alarm Rate

International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012 3

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

data sources. Decision fusion is the major component in the

multi-source data-mining system developed by AUG Signals

for decision support and situation assessment. It is able to au-

tomatically generate a solution given a library of features, da-

ta-mining algorithms and fusion techniques that are compara-

ble to a tuned solution for the data set. The advantages of this

system are its ability to incorporate:

 Multiple-source (sensor) data

 Multiple similar and dissimilar features

 Multiple data-mining algorithms

 Multiple fusion methodologies

This produces a system that exploits the resources of truth

data, feature extraction, data-mining and fusion, while mini-

mizing the level of expertise required for the end-user. The

architecture for the system is shown below.

2.2 DATA TRANSFORMATION

Integrated information systems must usually deal with hete-

rogeneous schemata. In order to present to the user query re-

sults in a single unified schema, the schematic heterogeneities

must be bridged. Data from the data sources must be trans-

formed to conform to the global schema of the integrated in-

formation system. Two approaches are common to bridge he-

terogeneity and thus specify data transformation: schema in-

tegration and schema mapping. The former approach is driven

by the desire to integrate a known set of data sources. Schema

integration regards the individual schemata and tries to gen-

erate a new schema that is complete and correct with respect

to the source schemata, that is minimal, and that is unders-

tandable

The latter approach, schema mapping, assumes a given target

schema; that is, it is driven by the need to include a set of

sources in a given integrated information system. A set of cor-

respondences between elements of a source schema and ele-

ments of the global schema are generated to specify how data

is to be transformed A particularly interesting addition to

schema mapping are schema matching3 techniques, which semi-

automatically find correspondences between two schemata.

There is much ongoing research in both the areas of schema

matching and schemas mapping comprehensive surveys are

yet missing.

The goal of both approaches, schema integration and schema

mapping, is the same: transform data of the sources so that it

conforms to a common global schema. Given a schema map-

ping, either to an integrated or to a new schema, finding such

a complete and correct transformation is a considerable prob-

lem. The data transformation itself, once found, can be per-

formed offline, for instance, as an ETL process for data ware-

houses; or online, for instance, in virtually integrated fede-

rated databases. After this step in the data integration process

all objects of a certain type are represented homogeneously.

2.3 DUPLICATE DETECTION

The next step of the data integration process is that of dupli-

cate detection (also known as record linkage, object identifica-

tion, reference reconciliation, and many others). The goal of

this step is to identify multiple representations of the same

real-world object: the basic input to data fusion.

In principle, duplicate detection is simple: Compare each pair

of objects using a similarity measure and apply a threshold. If

a pair is more similar than the given threshold it is declared a

duplicate. In reality there are two main difficulties to be

solved: effectiveness and efficiency.

Effectiveness is mostly affected by the quality of the similarity

measure and the choice of a similarity threshold. A similarity

measure is a function determining the similarity of two ob-

jects. Usually the similarity measure is domain-specific, for

instance, designed to find duplicate customer entries. Domain-

independent similarity measures usually rely on string-

distance measures, such as the Levenshtein-distance [Levensh-

tein 1965]. The similarity threshold determines when two ob-

3 There are two other fields in computer science that also use the term

(data) fusion. In information retrieval it means the combination of search

results of different search engines into one single ranking, therefore it is

also called rank merging. In networking it means the combination of data

from a network of sensors to infer high-level knowledge, therefore also

called sensor fusion. Beyond computer science, in market research, the term

data fusion is used when referring to the process of combining two data-

sets on different, similar, but not identical objects that overlap in their

descriptions.

International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012 4

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

jects are duplicates. A too-low threshold will produce a high

recall (all duplicates are found) but a low precision (many

non-duplicate pairs are declared duplicates). A too-high thre-

shold results in high precision, but low recall. Tuning the thre-

shold is difficult and very domain- and even dataset-specific.

Efficiency is an issue because datasets are often very large, so

even calculating and storing all pairs of objects can become an

obstacle. Another obstacle of efficient duplicate detection is

the complexity of the similarity measure itself, for instance,

because the expensive Levenshtein-distance (or edit-distance)

is part of the similarity function. The first obstacle is overcome

by an intelligent partitioning of the objects and comparison of

pairs of objects only within a partition. A prominent example

of this technique is the sorted neighborhood method

[Hern´andez and Stolfo 1998]. The second obstacle can be alle-

viated somewhat by efficiently computing upper bounds of

the similarity and computing the actual distance only for pairs

whose bounds are higher than the upper bound [Weis and

Naumann 2004].

The result of the duplicate detection step is the assignment of

an object-ID to each representation. Two representations with

the same object-ID indicate duplicates. Note that more than

two representations can share the same object-ID, thus form-

ing duplicate clusters. It is the goal of data fusion to fuse these

multiple representations into a single one.

2.4 COMPLETE AND CONCISE DATA INTEGRATION

Data integration has two broad goals: increasing the com-

pleteness and increasing the conciseness of data that is availa-

ble to users and applications. An increase in completeness is

achieved by adding more data sources (more objects, more

attributes describing objects) to the system. An increase in

conciseness is achieved by removing redundant data, by fus-

ing duplicate entries and merging common attributes into one.

In analogy to the well-known precision/recall measure from

information retrieval, we can similarly define a measure of

conciseness/completeness when regarding unique and addi-

tional object representations in the considered universe and

the concrete data set that is being measured (see Figure).

Fig.Visualizing extensional and intensional completeness when integrating two data sources

(source S and T with their respective schemas (A, B, ID) and (B, C, ID)) into one integrated result,

using information from schema matching (common attributes, here identified by same name) and

duplicate detection (common objects, here identified by same values in the ID column).

Completeness. In analogy to recall, completeness of a dataset,

such as a query result or a source table, measures the amount

of data in that set, both in terms of the number of tuples (ex-

tensional, data level) and the number of attributes (intensional,

schema level).

Extensional completeness is the number of unique object re-

presentations in a dataset in relation to the overall number of

unique objects in the real world, such as, in all the sources of

an integrated system. It measures the percentage of real-world

objects covered by that dataset. We assume we are able to

identify same real-world objects, for example, by an identifier

created during duplicate detection.

 =

 =

Intensional completeness is the number of unique attributes in

a dataset in relation to the overall number of unique attributes

available. An increase is achieved by integrating sources that

supply additional attributes to the relation; that is, additional

attributes that could not be included in one of the schema

mappings between the sources considered so far.

Conciseness. In analogy to precision, conciseness measures the

uniqueness of object representations in a dataset. In the terms

of the above Figure, extensional conciseness is the number of

unique objects in a dataset in relation to the overall number of

object representations in the dataset.

 =

 =

Similarly, intensional conciseness measures the number of

unique attributes of a dataset in relation to the overall number

of attributes. For these measures to be useful, the definition of

objects in the universe and the considered dataset needs to be

the same. Schema-altering operations, such as joins, may cause

problems here.

2.5 DATA FUSION ANSWERS

The result of a query to an integrated information system is

called an answer. Such an answer could be characterized,

among others, as being one of the following.

 Complete. A complete answer contains all the objects

(extensionally complete) and also all attributes inten-

sionally complete) that have been present in the

sources. A complete answer is not necessarily concise,

Extensional
completeness

Extensional
conciseness

International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012 5

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

as it may contain objects or attributes more than just

once.

 Concise. An answer is concise if all real-world objects

(extensionally concise) and all semantically equiva-

lent attributes (intensionally concise) present are de-

scribed only once.

 Consistent. A consistent answer contains all tuples

from the sources that are consistent with respect to a

specified set of integrity constraints (inclusion or

functional dependencies) [Arenas et al. 1999; Fuxman

et al. 2005a]. In this sense, such an answer is not nec-

essarily complete, as all inconsistent object represen-

tations are left out of the result. However, given that

one of the integrity constraints is a key constraint on

some real-world identifier, a consistent answer is ex-

tensionally concise for all included object representa-

tions.

 Complete and Consistent. A complete and consistent

answer combines the advantages of completeness and

conciseness and consists of all real world object de-

scriptions from the sources, additionally fulfilling a

key constraint on some real-world ID. Such a result

contains all attributes from the sources and combines

semantically equivalent ones into only one attribute.

That way, intensional as well as extensional complete

and conciseness is given.

The data fusion step in data integration aims at producing a

complete and consistent answer.

3 RELATIONAL OPERATORS AND TECHNIQUES FOR

DATA FUSION

This section introduces standard and advanced relational op-

erators and examines their abilities in fusing data from differ-

ent data sources. As we specifically regard relational tech-

niques for the remainder of this section, data is integrated

from source tables (possibly coming from different data

sources) into one integrated table. We first consider standard

operators, such as union and join. Join-based techniques gen-

erally combine tuples from several tables while evaluating

some predicates on some of their columns. Union-based tech-

niques generally build a common schema first and then ap-

pend the different tuple sets from the source tables. We then

regard more advanced relational techniques which combine

standard operators, invent a new one, or use a different ap-

proach. The descriptions of operators and techniques assume

binary operators, operating on two tables only. The extension

to more than two tables is straightforward in all cases; howev-

er, associativity is not always given.

Properties and Characteristics of Operators and Techniques

We describe the following operators and techniques using one

or more of the following characteristics.

Value preservation. When combining tables in order to in-

crease extensional completeness, not necessarily all values

from the sources are included in the result (e.g., a regular join

that only contains tuples from one table, if it has a join partner

in the other table). However, for an operator to be fully value

preserving, exactly all values for all attributes of all described

objects need to remain in the result. We denote an operator

that does not lose any such value or creates or duplicates val-

ues value preserving. Please note that the sole existence of a

value is not sufficient and that we allow duplicate values.

Thus, bag union would be an example of a value preserving

operator, set union and Cartesian product examples for non

value-preserving operators. Value preservation becomes im-

portant when applying (duplicate-sensitive) functions after-

wards.

Value preservation should not be mistaken with the property

of restorability, meaning that we can invert the operation and

infer the values in the sources from the result (e.g., not possi-

ble for union). A simpler case is object preservation: Actual

values of attributes describing objects may get lost, but at least

all objects that have been described in the sources are also in-

cluded in the result. Objects are thereby identified by a real-

world identifier. Please note that we do not consider informa-

tion preservation in terms of intensional completeness

Uniqueness. An operator has the uniqueness preservation

property if corresponding attributes (according to the schema

mapping) that contain unique values in the sources also con-

tain unique values in the result. This is, for example, true for

an equality join on these attributes, but not for a union. Uni-

queness-preserving operations are useful in scenarios where

multiple representations of one real-world object only exist in

different data sources (no intra source duplicates) and the

unique attribute is a real world identifier. In contrast, an oper-

ator that creates a result that contains an attribute that is

unique (regardless if there have been unique attributes in the

sources) is said to have the uniqueness-enforcing property. In

International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012 6

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

order to produce a complete and concise answer, as is the goal

in data fusion, an operator needs to be uniqueness enforcing

in an attribute holding a real-world identifier.

Join Approaches

Join approaches in general increase intensional completeness,

as attributes from different sources are seperately included in

the result. However, this comes at the cost of not guaranteeing

extensionally completeness, except for the case of a full outer

join. Concerning extensional conciseness, join approaches per-

form very well, but only if we can rely on globally unique

identifiers (e.g., created by duplicate detection), and no intra-

source duplicates are present.

Standard Joins. An equi-join (=) combines tuples from two

relations if the join condition consists of equality conditions

between columns and if it evaluates to true [Ullman et al.

2001]. The result also includes all other attributes from the

sources in the result.

The Natural Join () combines two tuples from two relations

if all common attributes (same name) coincide in their

attribute values [Ullman et al. 2001]. Attributes that are not

present in all relations are not considered in joining the rela-

tions, but are included in the result. Natural joins are also uni-

queness preserving, but not necessarily value/object preserv-

ing.

The Full outer Join (| |) extends the result of a standard join

operation by adding tuples that are only included in one of the

two source relations. The missing attributes present in only

one relation are padded by null values [Ullman et al. 2001].

Full Disjunction. As the outer join operator in general is not

associative, combining more than two tables by an outer join

may result in different result tables, depending on the order in

which the tables are joined. The full disjunction operator is

defined in Galindo-Legaria [1994] as the combination of two or

more tables, where all matching tuples are combined into one

single tuple. It could therefore be seen as a generalization of a

full outer join to more than two relations. Full disjunction can

generally not be computed by a combination of outer joins

alone [Galindo-Legaria 1994]. Rajaraman and Ullman [1996]

cover full disjunctions in more detail and recent work on the

topic provides a fast implementation [Cohen and Sagiv 2005].

Full disjunctions are uniqueness preserving and value/object

preserving, like full outer joins.

Union Approaches

Union approaches are the natural way of accomplishing ex-

tensional completeness, as the result naturally includes all

tuples from both relations. In contrast to join approaches, un-

ion approaches do not perform as well concerning concise-

ness.

Union, Outer Union, and Minimum Union. The union (∪)

operator (with set semantics) combines the tuples of two un-

ion-compatible relations and removes exact duplicates, that is,

tuples that coincide in all attribute values [Ullman et al. 2001].

Two relations are union compatible if they are defined on the

same number of attributes and if the data types of the

attributes match. Union is not defined on nonunion-

compatible relations. As the two example data sources are not

unioncompatible (nonmatching data types), they cannot be

integrated using union. Union is not uniqueness preserving as

only exact duplicates are removed, resulting in contradicting

tuples, with the same key value in the source relations appear-

ing multiple times in the result. Uncertainties and contradic-

tions are ignored; the operator is not value- but object preserv-

ing.

Outer union () overcomes one restriction of union and com-

bines two nonunion compatible relations by first padding

attributes that are not in common with null values and then

performing a regular union [Galindo-Legaria 1994]. Like un-

ion, outer union is not value- but object preserving. It is not

uniqueness preserving, and conflicts are ignored. Outer union

is not a standard operator but can be rewritten in SQL.

The minimum union operator (⊕) is defined by Galindo-

Legaria [1994] as the result of an outer union from which sub-

sumed tuples have been removed.

3.1 OTHER TECHNIQUES

The following techniques are neither join, nor union-based,

many incorporating additional information, extending the

relational model or existing relational operators, or combining

operators in order to fuse data.

Considering All Possibilities. Another possible way of dealing

with uncertain data is to explicitly represent uncertainty in

relations and use it to answer queries. The approaches de-

scribed in Lim et al. [1994] and DeMichiel [1989] add an addi-

tional column to each table, its value helping to decide wheth-

er a tuple should be included in the query answer. All these

approaches implement the Consider All Possibilities strategy,

using the additional information to allow the user to choose

consciously among all possibilities or presenting the most

probable value.

Considering Only Consistent Possibilities. A new line of re-

search was initiated by work started in Arenas et al. [1999],

which introduced the idea of returning only consistent infor-

mation (not containing conflicts, given some constraints) from

a database to a user when issuing a query.

International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012 7

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Among the relational techniques, union approaches are in

principle well suited for data fusion, as all information from

the source tables are retained and extensional as well as inten-

sional completeness are easily reached. Only unnecessary in-

formation (i.e., duplicate tuples or subsumed tuples) is de-

leted, increasing conciseness. As attributes describing the same

semantic concept can be mapped, intensional conciseness is

also reached in an intuitive manner. However, in most cases,

too many tuples and therefore too much information is kept,

requiring an additional step towards a more satisfying level of

conciseness. This finally results in one single tuple per real-

world object. The intuitive way of increasing conciseness to-

gether with the union approach is to apply grouping and ag-

gregation.

On the other hand, join approaches generally retain informa-

tion on same real-world objects in different columns (not in

different rows). Columns with equal semantic attributes do

not automatically coincide as in the union approaches. They

need to be combined explicitly. Moreover, completeness comes

more or less without cost, but conciseness needs to be

achieved by an additional processing of the join result. If there

are no intrasource duplicates in the tables, a simple combina-

tion of two rows using a user-defined function is sufficient.

However, if there are intrasource duplicates, again, grouping

and aggregation or some advanced join operator is needed.

4 DATA TRANSFORMATION

Information from theWeb has already become of major impor-

tance in helping individuals and companies to follow the cur-

rent development inmany areas, analyzing market develop-

ments and making business decisions. In an online bookshop,

a data warehouse, for example, can be used to manage busi-

ness transaction data, such as customer orders and promo-

tions.

The implementation of OLAP on the data warehouse will help

to gain an insight into customer behavior, perform buy and

replenish analysis, and design focused promotions.

However, in order to analyze market trends and make new

business plans, a company’s own data is not sufficient, the

bookshop manager also needs information from his suppliers,

partners, and about his competitors. For example, discount

book information or information about new publications from

his competitors is important to help him

4.1 TRANSFORMATION ALGORITHM

After mapping rules are specified, a parser will parse the

mapping rules and produce the traversing route list and a list

of subtrees needed in constructing the tree representing the

relational table. This data provides the input parameters of the

mapping algorithm. The input tree in the algorithm can be any

MIX object tree of the corresponding concepts. The output

trees will be warehouse tables. The key part of the transforma-

tion algorithm is a procedure for recursively traversing an ob-

ject tree from the root to the leaves until needed subtrees are

reached.

At first, the transformation processor does a breadth-first tra-

verse on a MIX object tree. If a node label matches the route

information from the mapping rules, the search will be ap-

plied on its subtrees (sub objects). If two or more node labels

match with the same route node label, the sub objects of that

first MIX object matched will be searched first.

This procedure works recursively until all needed subtrees

(MIX sub objects) are found. Once a needed sub tree is found

it will be extracted, transformed and merged into the corres-

ponding output tree. The transformation algorithm is outlined

below:

Algorithm:

 Given a MIX object which can be illustrated as a tree

T, t: the root node of tree T;

 P: a list of MIX objects, their ontology concepts as node labels

indicate routes from the root node to the needed subtrees;

 C: a list of column names of a warehouse table;

Output: a relational table which can be represented as a fixed-

depth tree RT.

Procedure transform (t, P, C)

Var Mark : sign of visited

m, n : nodes

p : an ontology concept in P

c : a column name in C

Begin

if t is not visited then Mark[t] : = visited;

for each m adjacent to t do

Begin

Mark[m] : = visited;

if m matches one p in P then

Begin

if p does not match any c in C then

transform (m, P, C);

else // p matches c

Begin

International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012 8

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

for each n adjacent to m do

Begin

if n is not visited then

Begin

Mark[n] : = visited;

do whatever processing is necessary on n;

merge (n, RT);

End

End

End

End

End

End

5 REPRESENTING AND QUERYING SEMI-STRUCTURED

DATA

OEM Database

The Object Exchange Model (OEM) [PGMW95] is designed

for semi structured data. Data in this model can be thought of

as a labeled directed graph. For example, the very small OEM

database shown in Figure contains (fictitious) information

about the Stanford Database Group. The vertices in the graph

are objects; each object has a unique object identifier (oid),

such as &5. Atomic objects have no outgoing edges and con-

tain a value from one of the basic atomic types such as integer,

real, string, gif, java, audio, etc.

All other objects may have outgoing edges and are called

complex objects. Object &3 is Complex and its sub objects are

&8, &9, &10, and &11. Object &7 is atomic and has value

“Clark". Names are special labels that serve as aliases for ob-

jects and as entry points into the database. In OEM Database

Figure, DB Group is a name that denotes object &1. Any object

that cannot be accessed by a path from some name is consi-

dered to be deleted.

In an OEM database, there is no notion of fixed schema. All

the schematic information is included in the labels, which may

change dynamically. Thus, an OEM database is self-describing,

and there is no regularity imposed on the data. The model is

designed to handle incompleteness of data, as well as struc-

ture and type heterogeneity as exhibited in the example data-

base. Observe in Figure OEM Database that, for example:

(i) members have zero, one, or more offices;

(ii) an office is sometimes a string and sometimes a com-

plex object;

(iii) a room may be a string or an integer.

For an OEM object X and a label l, the expression X:l denotes

the set of all l-labeled sub objects of X. If X is an atomic object,

or if l is not an outgoing label from X, then X:l is the empty set.

Such “dot expressions" are used in the query language.

5.1 THE LOREL QUERY LANGUAGE

In this subsection we introduce the Lorel query language,

primarily through examples. Lorel is an extension of OQL and

a full specification can be found in [AQM+96]. Here we high-

light those features of the language that have an impact on the

novel aspects of the system features designed specifically for

handling semi structured data. Many other useful features of

Lorel (some inherited from OQL and others not) that are more

standard will not be covered.

5.2 QUERY AND UPDATE PROCESSING IN LORE

As depicted in the above Figure, the basic steps that Lore fol-

lows when answering a query are:

 the query is parsed;

 the parse tree is preprocessed and translated into an

OQL-like query;

 a query plan is constructed;

 query optimization occurs; and

 the optimized query plan is executed.

Query processing in Lorel is fairly conventional, with some

notable exceptions: Because of the flexibility of Lorel, the pre-

processing of the parse tree to produce the OQL-like query is

complex.

Although the Lore engine is built around standard operators

(such as Scan and Join), some take an original favor. For ex-

ample, Scan may take as argument a general path expression,

and therefore may entail complex searches in the database

graph.

International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012 9

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

A unique feature of Lore is its automatic coercion of atomic

values. Coercion has an impact on the implementation of

comparators (e.g., = or <), but more importantly we shall see

that it has important effects on indexing.

The result of a Lorel query is always a set of OEM objects,

which become sub objects of a newly created Result object.

The Result object is returned through the API. The application

may then use routines provided by the API to traverse the re-

sult sub objects and display them in a suitable fashion to the

user.

Because of the exibility of Lorel, the preprocessing of the parse

tree to produce the OQL-like query is complex. We have im-

plemented the specification described in [AQM+96] and we

will not discuss the issue further here.

Although the Lore engine is built around standard operators

(such as Scan and Join), some take an original flavor. For ex-

ample, Scan may take as argument a general path expression,

and therefore may entail complex searches in the database

graph.

A unique feature of Lore is its automatic coercion of atomic

values. Coercion has an impact on the implementation of

comparators (e.g., = or <), but more importantly we shall see

that it has important effects on indexing.

The result of a Lorel query is always a set of OEM objects,

which become sub objects of a newly created Result object.

The Result object is returned through the API. The application

may then use routines provided by the API to traverse the re-

sult sub objects and display them in a suitable fashion to the

user.

5.3 QUERY OPERATORS & PLAN

Because of the exibility of Lorel, the preprocessing of the parse

tree to produce the OQL-like query is complex. We have im-

plemented the specification described in [AQM+96] and we

will not discuss the issue further here.

Although the Lore engine is built around standard operators

(such as Scan and Join), some take an original flavor. For ex-

ample, Scan may take as argument a general path expression,

and therefore may entail complex searches in the database

graph.

A unique feature of Lore is its automatic coercion of atomic

values. Coercion has an impact on the implementation of

comparators (e.g., = or <), but more importantly we shall see

that it has important effects on indexing.

The result of a Lorel query is always a set of OEM objects,

which become sub objects of a newly created Result object.

The Result object is returned through the API. The application

may then use routines provided by the API to traverse the re-

sult sub objects and display them in a suitable fashion to the

user.

Steps of Constructing a Query Plan

To see the construction of the query plan, refer to the above

Figure the sub tree for the from clause is constructed first.

Each simple path expression (or range variable) appearing

within the from becomes a Scan node. If several of these exist,

then a left-deep tree of Scan nodes with Join nodes connecting

them is constructed. At the top of the sub tree a Join node con-

nects the from clause with the sub tree for the where clause. For

where, each exists becomes a Select, Aggr, and Scan node, and

each predicate becomes a Select node. Finally, for the select

clause, another Join node is added to the top of the tree, and the

query plan sub tree for the select clause becomes the right

child. Let us further consider the sub tree for the select clause.

The plans for the two expressions constituting the select clause

are combined via union (using the SetOp operator).

Thus, each (complex) object in the result contains the set of all

Name sub objects of a Member (the left sub tree of the Union),

together with the count of all publications for that member. (In

Lorel, a select list indicates union, while ordered pairs would

be achieved using a tuple constructor operator.) The CreateSet

operator, described earlier, is needed to obtain all Name child-

International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012
10

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

ren of a given member before returning its object assignment

up the query tree. A CreateSet operator is not used in the right

sub tree, however, since the Aggregation operator by defini-

tion already calls its subquery to exhaustion (and then applies

the aggregation operator, in this case count) before continuing.

5.4 QUERY OPTIMIZATION AND INDEXING

The Lore query processor currently implements only a few

simple heuristic query optimization techniques. For example,

we do push selection operators down the query tree, and in

some cases we eliminate or combine redundant operators. In

the future, we plan to consider additional heuristic optimiza-

tions, as well as the possibility of truly exploring the search

space of feasible plans.

Despite the lack of sophisticated query optimization, Lore

does explore query plans that use indexes when feasible. In a

traditional relational DBMS, an index is created on an attribute

in order to locate tuples with particular attribute values quick-

ly. In Lore, such a value index alone is not sufficient, since the

path to an object is as important as the value of the object.

Thus, we have two kinds of indexes in Lore: a link (edge) in-

dex, or Lindex, and a value index, or Vindex. A Lindex takes an

oid and a label, and returns the oids of all parents via the spe-

cified label. (If the label is omitted all parents are returned.)

The Lindex essentially provides “parent pointers”, since they

are not supported by Lore's object manager. A Vindex takes a

label, operator, and value. It returns all atomic objects having

an incoming edge with the specified label and a value satisfy-

ing the specified operator and value (e.g., < 5). Because Vin-

dexes are useful for range (inequality) as well as point

(equality) queries, they are implemented as B+-trees. Lindexes,

on the other hand, are used for single object lookups and thus

are implemented using linear hashing.

5.5 VALUE INDEXES

In order to use Vindexes for comparisons, Lore must maintain

three different kinds of Vindexes:

(i) A String Vindex, which contains index entries for all

string-based atomic values (string, HTML, URL, etc.).

(ii) A Real Vindex, which contains index entries for all nu-

meric-based atomic values (integer and real).

(iii) A String-coerced-to-real Vindex, which contains all string

values that can be coerced into an integer or real (stored as

reals in the index).

5.6 INDEX QUERY PLANS

If the user's query contains a comparison between a path ex-

pression and an integer, real, or string (e.g., \DBGroup. Mem-

ber.Age > 30"), and the appropriate Vindexes and Lindexes exist,

then a query plan that uses indexes will be generated. For

simplicity, let us consider only queries in which the where

clause consists of one such comparison. Query plans using

indexes are different in shape from those based on Scan opera-

tors. Intuitively, index plans traverse the database bottom-up,

while scan-based plans perform a top-down traversal. An in-

dex query plan first locates all objects with desired values and

appropriately labeled incoming edges via the Vindex. A se-

quence of Lindex operations then traverses up from these ob-

jects attempting to match the full path expression in the com-

parison.4 Note that once we have an OA that satisfies the

where clause, it may be necessary to use one or more Scan

operations to find those components of the select expression

that do not appear in the where clause.

A query plan using indexes is shown in Figure. This plan in-

troduces four new query operators: Vindex, Lindex, Once, and

Named Obj. The Vindex operator, which appears as the left

child of the second Join operator, iteratively finds all atomic

objects with value less than 30 and an incoming edge labeled

Age, placing their oids in slot OA2. The Lindex operator

that appears below the Once operator iteratively places into

OA1 all parents of the object in OA2 via an

 Fig. Index Query Plan

Age edge. (Since OEM data may have arbitrary graph struc-

ture, the object could potentially have several parents via Age,

as well as parents via other labels.) Since Age is existentially

quantified in the query, we only want to consider each parent

once, even if it has several Age sub objects; this is the purpose

of the Once query operator. The second Lindex operator finds

all parents of the OA1 object via a Member edge, placing them

in OA0. Since we want the object in OA0 to be the named ob-

ject DBGroup, the Named Obj operator checks whether this is

so. Once we have traversed up the database using index calls

and constructed a valid OA, we finally use a Scan operator to

find all Office sub objects, which are returned as the result via

the topmost Project operator.

Currently, for processing where clauses, Lore only considers

subplans that are completely index-based (i.e., bottom-up),

such as the one discussed here, or subplans that are complete-

International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012
11

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

ly Scan-based (i.e., top-down), such as the one in the previous

Figure. An interesting research topic that we have just begun

to address is how to combine both bottom-up (index) and top-

down (Scan) traversals. When the two traversals reach a pre-

defined “meeting point”, the intersection of the objects discov-

ered by the index calls and the Scan operators identify paths

that satisfy the where clause. The appropriate meeting point

depends on the “fan-in” and “fan-out” of the vertices and la-

bels in the database, and requires the use of statistical informa-

tion.

5.7 UPDATE QUERY PLANS

Thanks to query plan modularity, we were able to handle arbi-

trary Lorel update statements by adding a single operator,

Fig. Update Query Plan

Update, to the query execution engine. The query plan is out-

lined in the following Figure. The left sub tree of the Update

node computes the from and where clauses of the update. In

our example, the left sub tree Finds those projects with title

“Lore” or “Tsimmis”. For each OA returned, the right sub tree

is called to evaluate the query plan for the sub- query to the

right of +=. (Other valid update assignment operators are :=

and = [AQM+96]). In our example, the right sub tree finds

those members whose name is “Clark”. Once the right sub tree

completes the OA, the Update node performs the actual up-

date operation; valid operations are Create Edge, Destroy

Edge, and Modify Atomic. In our example, the Update node

creates an edge labeled Member between each pair of objects

identified by its subtrees. Clearly a number of optimizations

are possible in update processing. For instance, in our example

the right sub tree of the Update node is uncorrelated with the

left sub tree and thus needs to be executed only once. We cur-

rently perform this optimization, and we are investigating

others.

6. CONCLUSION

In this paper we introduced the problem of data fusion in the

larger context of data integration, where data fusion is the last

step in a data integration process, schemata have been

matched, and duplicate records have been identified. Merging

these duplicate records into a single representation and at the

same time resolving existing data conflicts is still out of the

focus of mainstream research in the field of information inte-

gration systems. However, the problem has been addressed by

several researchers in the past decades.

In the second part of this paper, we gave an overview and

compared common relational techniques for data fusion. We

showed how they cope with data conflicts and mention the

characteristics of the results that they produce. In the third

part, we presented and commented on a list of information

integration systems that are capable of fusing data in various

ways. We classified the systems according to their abilities of

handling conflicts.

We have introduced a data-driven framework for the automat-

ic discovery of query transformation rules in semantic query

optimization. Based on this framework, we have introduced a

grid representation as the data distribution in the space of a

set of finite attributes. We have provided an algorithm for ex-

tracting a set of query transformation rules. We have shown

the correctness of our algorithm and the rules derived from it.

We also proved the completeness of our algorithm in a limited

sense. Finally, an extended example of a semantic query opti-

mization session was provided to demonstrate our discovery

framework.

As part of our future research, we would like to extend our

framework to the discovery of statistical rules for processing

statistical queries. Lastly, we would like to investigate the ben-

efits of data fusion and its usages in semi structured data

transformations

REFERENCES

[1] ADALI, S., CANDAN, K. S., PAPAKONS TANTINOU, Y., AND

SUBRAHMANIAN, V. S. 1996. Query caching and optimization in

distributed mediator systems. In Proceedings of theACMInternational

Conference on Management of Data SIGMOD. ACM Press, 137–146.

[2] AGRAWAL, P., BENJELLOUN, O., SARMA, A. D., HAYWORTH, C.,

NABAR, S. U., SUGIHARA, T., AND WIDOM, J. 2006. Trio: A system

for data, uncertainty, and lineage. In Proceedings of the International

Conference on Very Large Databases (VLDB), 1151–1154.

[3] AHMED, R., DE SMEDT, P., DU, W., KENT, W., KETABCHI, M. A.,

LITWIN, W. A., RAFII, A., AND SHAN, M.-C. 1991. The Pegasus he-

terogeneous multidatabase system. IEEE Comput. 24, 12, 19–27.

[4] AMBITE, J. L., ASHISH, N., BARISH, G., KNOBLOCK, C. A., MIN-

TON, S., MODI, P. J., MUSLEA, I., PHILPOT, A., AND TEJADA, S.

1998. Ariadne: A system for constructing mediators for Internet

sources. In Proceedings of the ACM International Conference on Manage-

ment of Data SIGMOD. ACM Press, 561–563.

[5] BATINI, C., LENZERIN, M., AND NAVATHE, S. B. 1986. A compara-

tive analysis of methodologies for database schema integration. ACM

Comput. Surv. 18, 4, 323–364.

International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012
12

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

[6] DITTRICH, K. R. AND DOMENIG, R. 1999. Towards exploitation of

the data universe: Database technology for comprehensive query

services. In Proceedings of the International Conference on Business In-

fromation Systems (BIS).

[7] EITER, T., FINK, M., GRECO, G., AND LEMBO, D. 2003. Efficient

evaluation of logic programs for querying data integration systems.

In Proceedings of the International Conference on Logic Programming

(ICLP), 163–177.

[8] FAGIN, R., KOLAITIS, P. G., AND POPA, L. 2005. Data exchange:

Getting to the core. Trans. Dat. Syst. 30, 1, 174–210.

[9] LEVENSHTEIN, V. 1965. Binary codes capable of correcting spurious

insertions and deletions of ones. Problems Inf. Transm. 1, 8–17.

[10] LEVY, A. Y., RAJARAMAN, A., AND ORDILLE, J. J. 1996a. Querying

heterogeneous information sources using source descriptions. In Pro-

ceedings of the International Conference on Very Large Databases (VLDB) .

Morgan Kaufmann, 251–262.

[11] TSAI, P. S. M. AND CHEN, A. L. P. 2000. Partial natural outerjoin—

An operation for interoperability in a multidatabase environment. J.

Inf. Sci. Eng. 16, 4 (Jul.), 593–617.

[12] TSENG, F. S.-C., CHEN, A. L. P., AND YANG, W.-P. 1993. Answering

heterogeneous database queries with degrees of uncertainty. Distrib.

Parallel Databases 1, 3, 281–302.

[13] ULLMAN, J. D., GARCIA-MOLINA, H., AND WIDOM, J. 2001. Da-

tabase Systems: The Complete Book. Prentice Hall PTR.

[14] WANG, H. AND ZANIOLO, C. 2000. Using SQL to build new aggre-

gates and extenders for object- relational systems. In Proceedings of the

International Conference on Very Large Databases (VLDB), A. E. Abbadi

et al., eds. Morgan Kaufmann, 166–175.

[15] J. Gafiney. Illustra's web datablade module. Technical report, Infor-

mix Corporation, February 1997. Available at

http://www.informix.com/informix/corpinfo/zines/whitpprs/illuswp/

dblade.htm.

[16] S. Ghandeharizadeh, R. Hull, and D. Jacobs. Heraclitus: Elevating

deltas to be first class citizens in a database programming language.

ACM Transactions on Database Systems, 21(3):370{426, 1996.

[17] G. Graeme. Query evaluation techniques for large databases. ACM

Computing Surveys, 25(2):73{170,1993.

[18] R. Goldman and J. Widom. Dataguides: Enabling query formulation

and optimization in semistructured databases. In Proceedings of the

Twenty Third International Conference on Very Large Data Bases,

Athens, Greece, August 1997.

[19] M. Kifer, W. Kim, and Y. Sagiv. Querying objectoriented databases. In

Proceedings of the ACM SIGMOD International Conference on Man-

agement of Data, pages 393{402, San Diego, California, June 1992.

[20] D. Konopnicki and O. Shmueli. W3QS: A query system for the World

Wide Web. In Proceedings of the Twenty-First International Confe-

rence on Very Large Data Bases, pages 54{65, Zurich, Switzerland,

September 1995.

http://www.informix.com/

